analysis.KNN

KNN is a class that holds 2 submodules. The submodules are K Nerarest Neighbor classification and regression models.

Note: After update 3.x, the classness of this module has been removed.

tra_analysis.KNN.knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform')

Uses a K Neighbors model for classification of data. Expects inputs as data and lables. Refer to sklearn's documentation for more information on use.

Given data and labels, it returns a model, confusion matrix (cm), and classification report (cr).

Example Usage

from tra_analysis import KNN

data = [[0], [1], [2], [3]]

labels = [0, 0, 1, 1]

KNN.knn_classifier(data, labels, n_neighbors = 2)[0]
KNN.knn_classifier(data, labels, n_neighbors = 2)[1][0]
KNN.knn_classifier(data, labels, n_neighbors = 2)[1][1]

outputs:

[0] (model)

KNeighborsClassifier(n_neighbors=2)

[1][0] (cm)

[[0 0]
 [2 0]]

[1][1] (cr)

              precision    recall  f1-score   support

           0       0.00      0.00      0.00       0.0
           1       0.00      0.00      0.00       2.0

    accuracy                           0.00       2.0
   macro avg       0.00      0.00      0.00       2.0
weighted avg       0.00      0.00      0.00       2.0

tra_analysis.KNN.knn_regressor(self, data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None)

Uses a K Neighbors model for regression of data. Expects inputs as data and outputs. Refer to sklearn's documentation for more information on use.

Given data and outputs, it returns a model, r2, mean squared error (mse), and root mean squared (rms).

Example Usage

from tra_analysis import KNN

data = [[0], [1], [2], [3]]

outputs = [0, 0, 1, 1]

KNN.knn_regressor(data, outputs, n_neighbors = 2)[0]
KNN.knn_regressor(data, outputs, n_neighbors = 2)[1][0]
KNN.knn_regressor(data, outputs, n_neighbors = 2)[1][1]
KNN.knn_regressor(data, outputs, n_neighbors = 2)[1][2]

outputs:

[0] (model)

KNeighborsRegressor(n_neighbors=2)

[1][0] (r2)

0.0

[1][1] (mse)

1.0

[1][2] (rms)

1.0